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Abstract
It is shown that the N th power of the light-cone evolution operator of the 2N -
periodic quantum discrete Liouville model can be identified with the Dehn twist
operator in quantum Teichmüller theory.

PACS numbers: 02.60.Lj, 02.10.Hh, 02.40.Re, 03.65.Fd, 03.70.+k, 11.25.Hf

1. Introduction

Integrable lattice regularization of quantum Liouville theory has been developed in [2, 4, 5].
According to the recent development in [3], the model is expected to describe the quantum
Liouville equation with Virasoro central charge cL > 1, including the ‘strongly coupled
regime’ 1 < cL < 25.

This paper can be considered as a second part of our previous work [3] dedicated to
the discrete Liouville model. Here we show that the evolution operator of the model can be
interpreted in pure geometrical terms within quantum Teichmüller theory [1,6–9]. Namely, we
identify the N th power of the light-cone evolution operator of the quantum discrete Liouville
model of spatial length 2N (which is the number of sites in a chain) with the Dehn twist
operator in quantum Teichmüller theory.

The paper is organized as follows. The quantum discrete Liouville system is briefly
described in section 2. The relation to quantum Teichmüller theory is explained in section 3.

2. Quantum discrete Liouville system

2.1. Algebra of observables

Following [3], algebra of observables AN , N > 1, is generated by self-adjoint elements fj ,
j ∈ Z, with periodicity condition fj+2N = fj and commutation relations

[fm, fn] =
{
(−1)m(2π i)−1, if n = m ± 1 (mod 2N)

0, otherwise.
(2.1)
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2.2. Equations of motion

The field variables

χj,t ≡ Ulc
te2πbfj+t Ulc

−t , j + t = 1 (mod 2)

are defined so that

Ulcχj,tUlc
−1 = χj−1,t+1.

Here the ‘light-cone’ evolution operator Ulc is defined explicitly

Ulc = G
N∏
j=1

ϕb(f2j ) =
N∏
j=1

ϕb(f2j−1)G (2.2)

where

ϕb(z) ≡ exp

(
1

4

∫ i0+∞

i0−∞

e−i2zw dw

sinh(wb) sinh(w/b)w

)
= (e2π(z+cb)b; q2)∞/(e2π(z−cb)b

−1; q̄2)∞,

q ≡ eiπb2
, q̄ ≡ e−iπb−2

, cb ≡ i(b + b−1)/2

while operator G is defined through the equations

Gfj = (−1)j fj−1G. (2.3)

The field variables solve the quantum discrete Liouville equation1

χj,t+1χj,t−1 = (1 + qχj+1,t )(1 + qχj−1,t )

with spatial periodic boundary condition

χj+2N,t = χj,t

and the initial data given by exponentiated generators

χ2j+1,0 = e2πbf2j+1 , χ2j,−1 = e2πbf2j .

3. Interpretation within quantum Teichmüller theory

In this section we interpret the evolution operator Ulc in geometrical terms by using
the formalism of decorated ideal triangulations and their transformations within quantum
Teichmüller theory described in [9].

3.1. Geometric realization

We consider an annulus with N marked points on each of its boundary components (2N points
in total) and choose decorated ideal triangulation τN of it, shown in figure 1. Equivalently,
we can think of τN as an infinite triangulated strip where triangles are numerated by integers
in accordance with figure 1 with periodicity condition τ̄N (n + 2N) = τ̄N (n), ∀n ∈ Z. In
this way we come to identification of the integers from 1 to 2N , numbering triangles in τN ,
with elements of the ring of residues Z2N ≡ Z/2NZ. Such identification will be assumed in
algebraic expressions, when necessary.

Denote D1/N the isotopy class of a homeomorphism of the annulus which rotates the top
boundary component wrt the bottom through angle 2π/N so that the marked points of the top

1 Using invariance of Ulc with respect to symmetry b ↔ b−1, one can also define the dual fields satisfying the dual
equation, see [3].
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Figure 1. Decorated ideal triangulation τN of an annulus with N marked points on each boundary
component. The leftmost and the rightmost vertical edges are identified.

Figure 2. Continuous transformation D1/N of triangulated annulus τN is a cyclic shift of the top
boundary wrt the bottom boundary to the right by one spacing.

boundary are cyclically shifted by one period. The reason for using fractional power notation
comes from the fact that

D1/N ◦ · · · ◦ D1/N︸ ︷︷ ︸
N times

= D

is nothing else but the Dehn twist. From figure 2 it follows that the following composition of
geometric transformations is identity,

(. . . , j, j − 1, . . .) ◦
∏×

k
ρ−1
k ◦

∏×
l
ω−1

2l+1,2̌l
◦ D1/N = id

where elementary geometric transformations ρi and ωij have the form

and

with

ωk,ľ ≡ ρl ◦ ωk,l ◦ ρ−1
l

while (. . . , j, j − 1, . . .) denotes the index shift transformation j �→ j − 1. Equivalently we
can write

D1/N =
∏×

l
ω2l+1,2̌l ◦

∏×
k
ρk ◦ (. . . , j, j + 1, . . .)
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so, quantum realization of D1/N in L2(R2N) has the form

F(τN ,D
1/N(τN)) � D1/N ≡ ζ−N−6/NP(...j,j+1...)

2N∏
k=1

Ak

N∏
l=1

T2l+1,2̌l (3.1)

with the normalization factor chosen in accordance with the convention for Dehn twists used
in [8]. Here P(...j,j+1...) is the natural realization of the cyclic permutation,

ζ = e−iπ(b+b−1)2/12

Ak ≡ e−iπ/3ei3πq2
keiπ(pk+qk)2

Tk,ľ = e−i2πpkpl ϕ̄b(qk + ql), ϕ̄b(z) ≡ (ϕb(z))
−1

where self-adjoint operators pj , qj satisfy Heisenberg commutation relations

[pj , pk] = [qj , qk] = 0, [pj , qk] = δj,k(2π i)−1.

We can rewrite equation (3.1) in the form

D−1/N = ζN+6/N
N∏

m=1

ϕb(q2m + q2m+1)e
i2π

∑N
j=1 p2jp2j+1

2N∏
k=1

A−1
k P(...,l,l−1,...). (3.2)

Proposition 1. Operators

κ(fj ) =
{

pj + pj−1, if j = 0 (mod 2)

qj + qj−1, otherwise
(3.3)

κ(G) = ζN+6/Nei2π
∑N

j=1 p2jp2j+1

2N∏
k=1

A−1
k P(...,l,l−1,...) (3.4)

define faithful (reducible) realization of the observable algebra AN in L2(R2N).

Proof. Let us check that these definitions are consistent with relations (2.1) and (2.3). First,
evidently,

[κ(f2j ), κ(f2k)] = [κ(f2j+1), κ(f2k+1)] = 0

while

[κ(f2j ), κ(f2k+1)] = [p2j + p2j−1, q2k+1 + q2k] = (2π i)−1(δj,k + δj,k+1)

thus reproducing relations (2.1). Next,

Ad(κ(G))κ(f2j ) = Ad(κ(G))(p2j + p2j−1) = Ad(ei2π
∑N

k=1 p2kp2k+1)(p ˇ2j−1 + p ˇ2j−2)

= Ad(ei2π
∑N

k=1 p2kp2k+1)(q2j−1 − p2j−1 + q2j−2 − p2j−2) = q2j−1 + q2j−2

= κ(f2j−1)

and similarly

Ad(κ(G))κ(f2j+1) = Ad(κ(G))(q2j+1 + q2j )

= Ad(ei2π
∑N

k=1 p2kp2k+1)(q2̌j + q ˇ2j−1) = −p2j − p2j−1 = −κ(f2j )

in agreement with equation (2.3). �

Now, comparing equations (2.2) and (3.2), we come to our main result

κ(Ulc) = D−1/N . (3.5)
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3.2. A similarity transformation

Here, we give (without proof) the result of similarity transformation which simplifies the N th
power of the evolution operator.

Define

W ≡
∏

N�j>1

(ϕ̄b(f2j )ϕb(f2j−1)ϕb(g2j,2N+1)), ϕ̄b(x) ≡ (ϕb(x))
−1

where gj,k ≡ ∑k
l=j+1 fj , and the product of noncommuting operators is in decreasing order

from left to right.

Proposition 2. One has the following explicit expression for the transformed evolution
operator

Ũlc ≡ Ad(W−1)Ulc = (ζeiπ/6)−N
∏

N>k>1

ϕ̄b(g2k−1,2N−1)

× ϕ̄b(g2,2N−1)ϕb(g2N−1,2N+1)ϕ̄b(f2)e
iπ

∑N
l=1 f22lG

where the product is again in decreasing order from left to right, while the N th power has the
form

ŨN
lc = (ζeiπ/6)1−N2

ϕb(g2,2N+1)e
−iπ f22

(
eiπ

∑N
l=1 f22lG

)N
.

4. Conclusion

The main result of this paper is formula (3.5) which, on one side, identifies ‘zero-modes’ of
the 2N -periodic quantum discrete Liouville equation to be given by the N th power of the
light-cone evolution operator Ulc, and equates these zero-modes to the (inverse of) Dehn twist
operator in quantum Teichmüller theory, on the other side. The immediate consequence of this
result is that now, based on the known spectrum of operator D, we know the spectrum of the
model. Indeed, the complete spectrum of D is given by the formula [9]:

Spec(D) = {ei2π!s |s ∈ R>0}
where

!s = cL − 1

24
+ s2, cL = 1 + 6(b + b−1)2 > 1

are conformal weights and the Virasoro central charge in (continuous) quantum Liouville
theory, see [10] for a recent review. This is consistent with interpretation of the Dehn twist
spectrum as Liouville conformal weights through the formula Spec(D) = Spec(ei2πL0), where
L0 is the Virasoro generator in continuous quantum Liouville theory with the known spectrum

Spec(L0) = {!s + m|s ∈ R>0, m ∈ Z�0}.
Our result implies the following spectrum of Ulc

Spec(Ulc) = {e−i2π(!s+m)/N |s ∈ R>0, m ∈ Z/NZ}
which coincides with the spectrum of the exponential operator e−2π iL0/N in quantum Liouville
theory. Thus, the discrete version of quantum Liouville theory is in complete agreement with
the continuous one and there is no modification in the spectrum of conformal weights.
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